New Conjectures and Results for Small Cycles of the Discrete Logarithm
نویسندگان
چکیده
Brizolis asked the question: does every prime p have a pair (g, h) such that h is a fixed point for the discrete logarithm with base g? The first author previously extended this question to ask about not only fixed points but also two-cycles, and gave heuristics (building on work of Zhang, Cobeli, Zaharescu, Campbell, and Pomerance) for estimating the number of such pairs given certain conditions on g and h. In this paper we give a summary of conjectures and results which follow from these heuristics, building again on the aforementioned work. We also make some new conjectures and prove some average versions of the results.
منابع مشابه
Some heuristics and results for small cycles of the discrete logarithm
Abstract. Brizolis asked the question: does every prime p have a pair (g, h) such that h is a fixed point for the discrete logarithm with base g? The first author previously extended this question to ask about not only fixed points but also two-cycles, and gave heuristics (building on work of Zhang, Cobeli, Zaharescu, Campbell, and Pomerance) for estimating the number of such pairs given certai...
متن کاملThe new protocol blind digital signature based on the discrete logarithm problem on elliptic curve
In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملGeneralized Jacobian and Discrete Logarithm Problem on Elliptic Curves
Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...
متن کاملDynamics of higher order rational difference equation $x_{n+1}=(alpha+beta x_{n})/(A + Bx_{n}+ Cx_{n-k})$
The main goal of this paper is to investigate the periodic character, invariant intervals, oscillation and global stability and other new results of all positive solutions of the equation$$x_{n+1}=frac{alpha+beta x_{n}}{A + Bx_{n}+ Cx_{n-k}},~~ n=0,1,2,ldots,$$where the parameters $alpha$, $beta$, $A$, $B$ and $C$ are positive, and the initial conditions $x_{-k},x_{-k+1},ldots,x_{-1},x_{0}$ are...
متن کامل